Cristiane Taniguti e Matheus Krause
27/07/2017
fen <- read.csv("Feijao_Lavras_para_Genotipos.csv")
mean_cult <- tapply(fen$Produtividade, fen$Cultivar, mean)
mean_cult
1 2 3 4 5 6 7
1046.6667 846.6667 733.3333 920.0000 836.6667 966.6667 940.0000
8 9 10
633.3333 610.0000 910.0000
colfunc<-colorRampPalette(c("royalblue","red"))
image(as.matrix(mean_cult), col=colfunc(10))
Phaseolus vulgaris L.
Espécie diplóide com n=11
Genoma sequenciado Schmytz et al. 2014
Variação 1 = A
Variação 2 = a
df.markers <- read.table("df.markers.tot.txt")
dim(df.markers)
[1] 10 25
df.markers[1:3,1:10]
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
IND1 Aa AA AA Aa AA AA Aa Aa AA Aa
IND2 Aa Aa AA aa aa AA AA Aa AA AA
IND3 AA aa aa aa aa Aa aa aa aa Aa
Aplicações
par(mfrow=c(1,2))
plot(mean_cult ~ df.markers[,3])
plot(mean_cult ~ df.markers[,4])
mark3 <- as.factor(df.markers[,3])
mean_cult <- as.numeric(mean_cult)
modelo <- lm(mean_cult ~ mark3)
summary(modelo)
Call:
lm(formula = mean_cult ~ mark3)
Residuals:
Min 1Q Median 3Q Max
-97.778 -43.056 -1.389 46.667 102.222
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 658.89 42.14 15.635 1.06e-06 ***
mark3Aa 249.44 55.75 4.475 0.00288 **
mark3AA 285.56 59.60 4.792 0.00199 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 72.99 on 7 degrees of freedom
Multiple R-squared: 0.8005, Adjusted R-squared: 0.7435
F-statistic: 14.04 on 2 and 7 DF, p-value: 0.003548
mark4 <- as.factor(df.markers[,4])
modelo <- lm(mean_cult ~ mark4)
summary(modelo)
Call:
lm(formula = mean_cult ~ mark4)
Residuals:
Min 1Q Median 3Q Max
-180.00 -73.33 28.33 85.83 178.33
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 813.33 55.74 14.593 1.69e-06 ***
mark4Aa 180.00 111.47 1.615 0.150
mark4AA -25.00 111.47 -0.224 0.829
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 136.5 on 7 degrees of freedom
Multiple R-squared: 0.302, Adjusted R-squared: 0.1025
F-statistic: 1.514 on 2 and 7 DF, p-value: 0.2842